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Abstract

An analytical, parametric study of the attenuation of
bending boundary layers or edge effects in balanced and
unbalanced, symmetrically and unsymmetrically laminat-
ed thin cylindrical shells is presented for nine contempo-
rary material systems. The analysis is based on the linear
Sanders-Koiter shell equations and specializations to the
Love-Kirchhoff shell equations and Donnell’s equations
are included. Two nondimensional parameters are inden-
tified that characterize and quantify the effects of laminate
orthotropy and laminate anisotropy on the bending bound-
ary-layer decay length in a very general and encompassing
manner.

A substantial number of structural design technology
results are presented for a wide range of laminated-com-
posite cylinders. For all the laminate constructions con-
sidered, the results show that the differences between
results that were obtained with the Sanders-Koiter shell
equations, the Love-Kirchhoff shell equations, and Don-
nell’s equations are negligible. The results also show that
the effect of anisotropy in the form of coupling between
pure bending and twisting has a neglible effect on the size
of the bending boundary-layer decay length of the bal-
anced, symmetrically laminated cylinders considered.
Moreover, the results show that coupling between the var-
ious types of shell anisotropies has a negligible effect on
the calculation of the bending boundary-layer decay
length in most cases. The results also show that in some
cases neglecting the shell anisotropy results in underesti-
mating the bending boundary-layer decay length and in
other cases it results in an overestimation.
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laminate membrane stiffnesses

modifed laminate stiffnesses defined in
Appendix B
laminate membrane-bending coupling

stiffnesses

modifed laminate stiffnesses defined in
Appendix B

first-order correction factor for
anisotropy parameter

attenuation or decay lengths
laminate bending stiffnesses

stiffness coefficients

major and minor principal lamina
moduli, respectively

lamina shear modulus

cylinder wall thickness and length

axial and circumferential bending and
twisting stress resultants, respectively
axial, circumferential, and shear
membrane stress resultants, respectively

nondimensional orthotropy parameter
loading function appearing in bending
boundary-layer differential equation
transverse-shear stress resultants

cylinder radius

constant coefficients of bending
boundary-layer differential equation
modified shear stress resultant defined in
Appendix B

strain-energy density
normal-displacement component

axial coordinate of cylinder
attenuation-length tolerance parameter

axial, circumferential, and shear

membrane strains, respectively
circumferential, angular coordinate

axial and circumferential bending and
twisting strains, respectively

constant defining different shell theories
lamina major Poisson’s ratio

lamina fiber angle
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Introduction.

The term, "bending boundary layer,” refers to lo-
calized zones of bending stresses and deformations that
appear in practically every type of thin shell structure.!
Bending boundary layers are caused by edge support
conditions; by localized mechanical loads, heating, or
cooling; and by abrupt changes in stiffness, such as that
caused by a cutout, a crack, or a stiffener. All of these
effects may be real concerns in a given preliminary de-
sign for an advanced aerospace vehicle made of laminat-
ed-composite materials. Thus, it is useful to have
nondimensional parameters that characterize the effects
of shell geometry and laminate orthotropy and anisotro-
py on the extent of bending boundary layers and that can
be used to help guide the development of a design. For
example, an optimal design for a pressure vessel might
be one that exploits the membrane load-carrying action
of a shell and minimizes zones of local bending stresses.
Meaningful nondimensional parameters could be used at
the preliminary design stage to identify families of lami-
nates and material systems that exhibit relatively small
bending boundary layers. Moreover, a meaningful esti-
mate of the size of a bending boundary layer in a shell is
very useful for determining an adequate first-approxima-
tion finite-element model for a complex shell structure.
Without a proper understanding of the extent of a bend-
ing boundary layer, it is possible to have a finite-element
model that could miss a significant part of the structural
response in a region where failures are often initiated by
high interlaminar stresses. Furthermore, apriori knowl-
edge of the extent of bending boundary layers is useful in
determining the instrumentation locations in structural
verification tests or in material characterization tests.” In
addition, knowledge of how laminate construction af-
fects the extent of a bending boundary layer is useful for
understanding how nonlinear prebuckling deformations
affect the buckling behavior of cylindrical shells.

Studies of the behavior of axisymmetric, bending
boundary layers in right-circular, cylindrical shell struc-
tures made of orthotropic or anisotropic materials and
with finite length have been presented, to at least some
extent, in Refs. | through 13. In the discussion that fol-
lows, reference is made to unbalanced and balanced lam-
inates that are either symmetrically or unsymetrically
laminated. Herein, the term unbalanced laminate is used
to indicate that coupling between pure extension or con-
traction and shearing is present in a laminate. The term
unsymmetric laminate is used to indicate coupling be-
tween any of the components of bending action with any
of the components of membrane action. A fully anisotro-
pic laminate would include both of these types of anisot-
ropy in addition to the anisotropy that is manifested by
coupling between pure bending and twisting action that
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is sometimes cxhibited by balanced, symmetric lami-
nales,

In Ref. 1, an analysis is presented and an expression
for the attenuation or decay length of the bending bound-
ary layer for a specially orthotropic cylinder that is sub-
jected to edges loads, internal pressure, and heating is
given, These equations, and the accompanying results,
are based on the linear Love-Kirchhoff shell equations.
In Ref. 3, an analytical solution that is based on Don-
nell’s simplifications to the linear Love-Kirchhoff shell
equations is given for fully anisotropic cylinders that are
subjected to lateral pressure and edge loads. Results that
show the effect of laminate anisotropy on the edge mo-
ment are presented for a clamped two-ply shell that is
subjected to internal pressure. In addition, a discussion
is presented that suggests that solutions that are based on
Donnell’s equations should be accurate for laminates
that are not highly anisotropic. An analytical study of
bending boundary layers in unbalanced, symmetrically
laminated cylinders, that is also based on Donnell’s
equations, is presented in Ref. 2. The aim of this study
was to determine a suitable gage section in a laminated-
composite tube that is to be used for a material character-
ization test. Results are presented for unidirectional, he-
lical-wound tubes.

An analytical solution for bending boundary layers
in unbalanced, symmetrically laminated and balanced,
unsymmetrically laminated circular cylindrical shells
that are subjected to internal pressure and thermal loads
is presented in Ref. 4. The solution is also based on Don-
nell’s linear equations and numerical results are present-
ed for filament-wound cylinders made of heat-treated
carbon-carbon material. A study that focuses mainly on
prebuckling deformations, with bending boundary lay-
ers, in homogeneous, orthotropic and unsymmetrically
laminated cross-ply cylinders that are subjected to axial-
compression loads and lateral pressure loads is presented
in Ref. 5. The effects of the bending boundary layers on
the buckling response are examined for several laminate
constructions, but the general effects of the laminate con-
struction on the extent the boundary layers are not dis-
cussed.

A pair of complex conjugate, fourth-order equa-
tions that are based on Flugge’s corresponding
equations'* and that can be solved in closed form are de-
rived for specially orthotropic, circular cylindrical shells
in Ref. 6. Moreover, eigenfunction solutions are present-
ed that include the solution for the axisymmetric bending
boundary layer and several simplifed equations are pre-
sented and their relative accuracy is analyzed. In Ref. 7,
a study of bending boundary layers in transversely iso-
tropic circular cylindrical shells is presented. This study
examines the attenuation characteristics of bending
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boundary layers by applying an asymptotic method to the
lincar, three-dimensional clasticity equations, and pre-
sents order-of-magnitude estimates for the stresses and
displacements for a wide range of ratios of the two prin-
cipal elastic moduli. In Ref. 8, an analytical solution for
an unbalanced, unsymmetrically laminated circular cy-
lindrical shell that 1s subjected to internal pressure is pre-
sented that is based on a variant of the Love-Kirchhoff
shell theory, which uses an expression for the change in
surface twist that was given by Timoshenko. Numerical
results are also presented for a two-ply shell that demon-
strate the coupling effects of the shell anisotropies.

The bending boundary layers of an unbalanced, un-
symmetrically laminated circular cylindrical shell that is
subjected to axial compression, torsion, or thermal load-
ing are investigated in Ref. 9. Results are also presented
that demonstrate the coupling effects of the shell
anisotropies. In addition, results are presented for two
more conventional unsymmetric laminates and a typical
quasi-isotropic laminate. In Refs. 10 and 11, bending
boundary layers are also examined for balanced, sym-
metrically laminated and balanced, unsymmetrically
laminated cylindrical shells, in the context of nonlinear
prebuckling deformations that occur as a result of com-
pression and thermal loads. In particular, the effects of
laminate stacking sequence on the extent and character
of the bending boundary layers are presented for two
groups of three similar laminates. Two of the laminates
are unsymmetric. In Ref. 12, alinear analysis is present-
ed that focuses mainly on balanced, symmetrically lami-
nated cylinders, and an expression is given for the length
of the bending boundary layers near the cylinder ends
that is based on the Love-Kirchhoff shell equations.

Most recently, Goldenveizer’s static-geometric du-
ality principle” has been used in Ref. 13 to reduce the
Sanders-Koiter equations'®"” for fully anisotropic, right-
circular cylindrical shells to two coupled fourth-order
equations that use a stress and a curvature function as the
unknown, primary field variables. The reduction is done
by adding certain negligibly small terms to the stress-
strain relations, which are intrinsically in error because
they must be established experimentally. The approach
demonstrates how the static-geometric duality principle
can be used to reduce greatly the amount of algebra need-
ed to obtain results. Eigenfunction solutions are also pre-
sented for specially orthotropic cylinders that are in
agreement with corresponding results presented in Ref.
6. Moreover, asymptotic formulas that can be used to de-
termine axisymmetric bending boundary layer attenua-
tion lengths and the decay of other unsymmetric, self-
equilibrated edges loads are given.

With the exception of Ref. 13, explicit expressions
for estimating the size of axisymmetric bending bound-
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ary layers in fully anisotropic, right-circular cylinders are
not found in the literature. Morcover, therc appears to be
even fewer results for laminated-composite shells made
of contemporary material systems and essentially no
substantial parametric studies. The present paper focus-
es on developing meaningful estimates of attenuation
lengths of bending boundary layers in balanced and un-
balanced, symmetrically and unsymmetrically laminated
circular cylinders. The analysis is based on the linear
Sanders-Koiter shell equations and contains the Love-
Kirchhoff shell equations’ and Donnell’s equations' as
special cases, and is somewhat similar to the analyses
presented by Reuter® and Chaudhuri, et. al.® With these
equations, explicit expressions are obtained and nondi-
mensional parameters are presented that characterize the
effects of cylinder geometry and laminate construction
on the size of a bending boundary layer in a very general
manner. In particular, generic design curves are present-
ed that use the nondimensional parameters to show the
effects of laminate orthotropy and anisotropy on the at-
tenuation length in a concise and encompassing manner.
In addition, values of these parameters are presented for
a very wide range of orthotropic and anisotropic laminate
constructions. Also, differences in the results that were
obtained in the present study by using the Sanders-Koiter
shell equations, the Love-Kirchhoff shell equations, and
Donnell’s equations are discussed.

Analysis

The ordinary differential equation that governs the
axisymmetric bending behavior of a right-circular cylin-
der that is subjected to edge loads or displacements and
surface tractions is obtained by first specializing the lin-
ear Sanders-Koiter shell equations, that are given in Ap-
pendix A, for axial symmetry. For the equations
presented herein, x and 8 denote the axial and circum-
ferential coordinates of a right-circular cylinder, respec-
tively, and the specialization to axial symmetry is
obtained by eliminating all terms in the equations that are
differentiatied with respect to the circumferential coordi-
nate, 8. The resulting set of equations for axisymmetric
behavior are given in Appendix B. The ordinary differ-
ential equation that governs the axisymmetric bending
behavior of a right-circular cylinder that s subjected to
edge loads or displacements and surface tractions is de-
rived in Appendix B and is given by

4 2
¥ +asd s aQuw=Px) M

where S, Q, and P(x) are defined in Appendix B by Eqs.
(B55), (B56), and (B57), respectively, and w(x) is the
radial deflection that is positive-valued when outward.
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The coefficients of Eq. (1) depend on the subscripted A,
B, and D constitutive terms of classical Love-Kirchhoff-
type laminated shell theory (e.g., sec Ref. 18, pp. 190-
202) and the radius of the cylinder middle surface, R.
To determine the specific form of the solution to
Eq. (1), it is useful to examine the positive-definiteness
conditions on the strain-energy density function. The
strain energy density function for this problem is given

by
27 =N,£2 + Nged + NogYo + M\kS + Mgk (2)

where N, N, and N,, are the membrane stress result-
ants; M, and M,, are bending stress resultants; £;, €y,
and Yy, are the middle-surface membrane strains; and

Ky and K3 are are middle-surface bending strains. By
using Egs. (B22), (B23), and (B28), the strain-energy
density function is expressed as

27 =N.£2+ Ny + T, + Mx? (3)
The strain energy density is expressed in terms of the
strains and constitutive terms by using the constitutive

equation given by Eq. (B29); that s,

T

€ AuApAB, (g

€3 AyAuRAB,|) €

=15 1202082 Pra |/ &g
2\¥o[ |BuBuAuBif| vl @

K3 B, B, By Dy (X2

The stiffness terms in Eq. (4) that have overbars are
defined by Egs. (B31) - (B35) and are functions of the
shell wall thickness-to-radius parameter, h/R. By
enforcing positive definiteness of the strain energy den-
sity function (e.g., see Ref. 19), the requirement that the

diagonal terms A,,, A,,, A, and D,, be positive-val-

ued is obtained. Moreover, the following determinants
are positive valued

A A

Ai:AZ =A11A22-A212>0 (5
AnAnsz R
Alezzxzs =(AIIA12_AIZ)K66_
KMKZGK%

AR —ARRL+2A R (K> 0 (6)

Likewise, positive definiteness of the strain energy den-
sity function also requires that the determinant of the

4

constitutive matrix in Eq. (4) be positive-valued. More-
over, by rearranging the strain energy density function
into the form

€y élleAIZ B, €3
7{=l Yo AmKhoK:sBm Yxe 7
2\¢ep ApA AyB, e 7

Ky B, B,y B, D) |{x:

the following additional positive-definiteness condition
is obtained

All Al6

16 466

=AAc-AL>0 (8)

The homogeneous solution for Eq. (1) involves the
square root of the quantity Q - S*. By using Egs. (B55)
and (B56), this quantity is given by

4C,C;-C;

-8z
Q 16C;

®
Substituting Egs. (B41) - (B43) into Eq. (9) and simpli-
fying, the quantity Q - S? is found to be given by

11 A 12 §
12 AIZ

6 Ko A (10
i1 B 12 B

It follows logically, that Q - S* > 0 because the posi-
tive-definiteness of the strain energy density function
requires that the determinant in Eq. (10) be positive val-

ued. Moreover, Q- S?> 0 implies that Q> 0, and Q>
C

0 implies that El>0. Equations (6), (8), and (B43)
1

C
indicate that C,> 0. Thus, =>>0 yields the condition
1

that C,=D,,e> 0 (see Egs. (B49) and (B50)). Because
D,, >0, e> 0. To enunciate the positive valuedness of
Q, it is convenient to introduce the expression

T'=Q=—y1— 11
4R"a;D e (v
-such that T?- 82> 0, and to express Eq. (1) as
d'w
ax (12)

Equation (12) is a linear, fourth-order, nonhomoge-
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ncous ordinary differential equation with constant coef-
ficients. The characteristic equation of Eq. (12) is given
by

A +4S A +4T7 =0 (13)
Using the knowledge that T? - S§? > 0, the roots of the

characteristic equation are obtained from the quadratic
formula; that is,

(x2)1'2=2(-5ii~/T2—-§7)

(14)

where i=¥=1 . Solution of this equation for A yields
four roots of Eq. (13) that are pairs of complex conju-
gates that are given by

me:i(JT—s ti~/T+S)

The homogeneous solution of Eq. (12) can be writ-
ten as follows

(15)

wy(x) = Kle“‘/ﬁ" sin[\/T+ Sx+ Kz] +

Kﬁ_mg,n sin[\/m X + K4] (16a)

where x € [O,L]. The symbols K, K,, K;, and K, are
real-valued constants that are determined from the
boundary conditions given by Egs. (B18) and (B19).
The solution given by Eq. (16a) represents a damped,
oscillatory response that decays from each end of the
cylinder. The regions near the edges of the cylinder,
where the amplitude of wy(x) is the largest are called the
bending boundary layers. All response quantities that
exhibit bending boundary layers involve derivatives of
Eq. (16a) and can be expressed in the general form

F(x) = Fle"/—'—s" sin[\/T+ Sx+ FZ] +

Fe VTS “9sin[/T+S x+F] (16b)

where F, through F, are constants.

When the length of the bending boundary layers are
less than half of the cylinder length, which is typical,
Eqgs. (16) can be partitioned into one part that applies to
the edge x = 0 and the other that applies to the edge x =
L. The response quantities for the region near x = 0 are
obtained by setting F, =0 in Eqs. (16). Similarly, the
response quantities for the region near x = L are obtained
by setting F, =0 in Eqgs. (16).

5

Formulas for the Attenuation Length

Formulas for the attenuation or decay length of the
bending boundary layers are obtained by first noting that
the response quantities for the region near x = 0 are

bounded by the two functions T F,€” "% and that the
response quantities for the region near x = L are bounded

by the two functions * Fse” T-SL-9 1 et d denote the
length for which the solution attenuates or decays to a
value of € times the amplitude F, or F;. A reasonable es-
timate of the attenuation length or decay length 4 is ob-
tained by replacing x and (L - x) with 4 in the
exponential terms of Eq. (16b), and by noting that the
amplitude of w(x) is attenuated by the exponential terms.
Thus, the attenuation length or decay length is given by

e VT%?=¢ which yields
d=-Ine(T-8)" <k (17)

By using Eqs. (B55) and (11), Eq. (17) is expressed as

d _ 4
7RE - VRh (18)

where d° s the attenuation length, in which anisot-

ropy is neglected, that is given in nondimensional form
by

d° _ Ine 4

¥Rh ‘L/_

The symbol h is the shell wall thickness, and & and #
are nondimensional orthotropy and anisotropy parame-
ters or factors, respectively, that are given by

(19)

1/4

12A,D
o=|— 128Dy
A A - AR (202)
-1
PRI My l 00

where the symbols in these equations are defined in
Appendix B.
Other useful forms of Eq. (20a) are obtained by in-

troducing an effective membrane Poisson’s ratio
A L .

V., = —==2=—= which is the geometric mean of the two
AjAy

Poisson effects associated with the inplane principal di-
rection of a homogenized orthotropic material. By using
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this effective membrane Poisson’s ratio, Eq. (20a) is ex-
pressed as

174

12D,

O=|—71—+
Ahi(1-v2)

2D

For a single-layer of homogeneous, specially orthotro-
pic material, V, =4V 2Vy , A4 =1, and

0=

1/4
__ B
E (1 "Vlzvu)] (22)

which, when substituted into Eq. (19), yields results
identical to the results presented by Kraus', where the
decay tolerance is given by € =e™. Likewise, for a sin-
gle-layer of isotropic material with an arbitrary thick-
ness, v, =V, # =1, and

__ 1
o= (23)

A 90%-decay length (¢ = .1) that is a good approxima-
tion to the behavior of homogeneous, metallic shells is

(V]

~ given by dR— =1.79 4/ % . Applying this formula, for

example, to the Space Shuttle solid rocket booster
described in Refs. 20 or 21 (R =72 in,, h=0.5 in.) gives

d°=0.15R=108in.

It is interesting to note that the differences between
the attenuation lengths that are based on the Sanders-
Koiter, the Love-Kirchhoff, and Donnell’s equations ap-

pear in the coefficient e and in the symbols with over-

bars in Eq. (20b) for the anisotropy factor 4 (see Egs.
(B22), (B31) - (B35), and (B45) - (B49). For these equa-

tions, the Sanders-Koiter theory is given by 1 =% and

the Love-Kirchhoff theory is given by t = I. Donnell’s
equations are given by i = 0. For isotropic and specially
orthotropic cylinders, # = 1 and the three sets of shell
equations yield identical results. Similarly, for antisym-
metric cross-ply cylinders (Aj;= Ay =D, =Dy, =B =
By=B;;=B4=0)

By, | A B e
7" [l ) A"B"] [1 T VR An- ALNAD - Bl 24
and the three shell theories yield identical results.

impli la;

For balanced, symmetrically laminated cylinders,

the only anisotropic constitutive terms are D, and D,

and the anisotropy factor is given by # = Ve where

wD;, {

AD,h

e=1-

)2 D., (25)

For thin-shell theories, such as the Sanders-Koiter the-

ory and the Love-Kirchhoff theory, 'Il% < 21—0 This result

suggests that a useful approximation to Eq. (25) and the
anisotropy factor can be obtained from a power series

expansion for small values of % This process yields

A=l- %(E)ZABT,W (26)

Dy, <1
AgD b
Thus, the approximate formula for # indicates that for
most practical applications of thin-shell theory, the dif-
ferences between the three different shell theories con-
sidered herein, and the effect of the flexural anisotropy
of a general symmetrically laminated cylinder, are negli-
gible.

A simplified formula for the anisotropy factor can
be derived for the general expression for A that is given
by Eq. (20b). For this case, the following power series

In this expression, 0S| S% and 0<%

expansions for small values of % are used

e =e0+el(%)+ez(%) + - (27)
+ o (28)
+ - 29
Ay = Ay + am(-a—) + am(rg—)2 + (30)

b, =b,+ bm(%) + bm(h)z 4o

R 3D

Substituting Egs. (27) - (31) into Eq. (20b) and expand-
ing the resulting expression in a similar manner yields

.4=;40+;4,(%)+,4:(%)2+--- (32)
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The coefficient A4, is a very complicated expression, and
as a result, the following first-order approximation of A
is used herein; that is,

A=A, (33)

nef)]

where A4, is the value of Eq. (20b) with p = 0, which is
the anisotropy factor that corresponds to the use of Don-
nell’s equations. This expression is given by

A A Az 14 b
’4(]:':( 1 ‘:_ u) aneo] [1_ 1

V aZZDH e(l

In this expression, a,, and b,, are obtained from Eqs.
(B45) - (B48) by setting it = 0 in Egs. (B31) - (B35).
The expression for e, is obtained from Eq. (B49) in a
similar manner. The term ¢, represents a first-order
correction to the results that correspond to Donnell’s
equations and is given by

-2

(34)

a;De, (auﬁ + am‘o) + 2azz(b 12160 = bzn‘:) —-2a.,b,e,

da,e, [\/ axDieo — by

é = (35)

where the terms that appear in Eq. (35) are given in
Appendix C. In addition, further simplifications to 4
and ¢, are also presented in Appendix C for unbalanced
and balanced, symmetric laminates and for balanced,
unsymmetric laminates, that include the subclasses of
general antisymmetric laminates, antisymmetric cross-
ply laminates, and antisymmetric angle-ply laminates,
The relative size of ¢, and its contribution to Eq. (33)
are examined parametrically in the subsequent section
of the present study.

Results and Discussion

Equations (18) and (19) form the basis for the para-
metric study presented herein. In particular, the two
equations isolate the contributions of shell orthotropy
and shell anisotropy to the bending boundary-layer de-
cay length with nondimensional parameters and imply
the generic design-chart representations that are illustrat-
edin Figs. I and 2. In Fig. 1, generic results are present-
ed that show the nondimensional, 90%-decay length

given by %— as a function of the orthotropy pa-
£=01

rameter &, for selected values of the anisotropy parame-
ter 4. A 90%-decay length was selected herein to yield
an accuracy that is approximately to within the accuracy
of the experimentally determined material properties, but

7

other values could be used.

In a manner similar to Fig. |, Fig. 2 shows the non-
dimensional, 90%-decay length as a function of the
anisotropy parameter ##, for selected values of the orthot-
ropy parameter . Results that correspond to balanced,
symmetrically laminated cylinders arc given by a value
of # =1 and results that correspond to an isotropic shell
wall are indicated in the figures by the filled circle with
an ordinate valuc of 1.79. Overall, these two figures rep-
resent results that are applicable to a vast range of lami-
nate constructions, and provide a common basis for
comparison of regular and hybrid laminates made of dif-
ferent material systems and laminate stacking sequences.
In general, the figures show increases in the nondimen-
sional 90%-decay length with increases in either of the
orthotropy parameter @ or the anisotropy parameter .
In addition, the results in Figs. | and 2 clearly indicate
the effect of neglecting shell-wall anisotropy on the at-
tenuation length of a bending boundary layer.

The actual value of the nondimensional, 90%-de-
cay length depends on the particular values of the orthot-
ropy and anisotropy parameters of a given laminate.
Thus, additional results are presented subsequently that
show how the orthotropy parameter & and the anisotropy
parameter  vary with laminate construction. In particu-
lar, values of @ and # are presented first for balanced
and unbalanced symmetrically laminated cylinders.
Then, values are presented for balanced and unbalanced
unsymmetrically laminated cylinders. Nine different
contemporary material systems were used to generate
these results. These material systems include boron-alu-
minum, S-glass-epoxy, a typical boron-epoxy, AS4/
3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/
5260 graphite-bismaleimide, Kevlar 49-epoxy, IM7/
PETI-S, and P-100/3502 pitch-epoxy materials. The me-
chanical properties of these material systems are present-
ed in Table 1 and the nominal ply thickness that was used
is 0.005 in.

Symmetrically laminated shell walls are character-
ized mathematically by values of zero for the subscripted
B terms that appear in the constitutive equation, Eq.
(A15). In addition, balanced, symmetrically laminated
shell walls do not exhibit coupling between extension
and shear, which is characterized by A,,=A,,=0 inEq.
(A15). Shell walls of this class are strictly specially
orthotropic for many laminates. However, for some wall
constructions, balanced, symmetric laminates exhibit
anisotropy in the form of coupling between pure bending
and twisting of the shell wall. This type of anisotropy is
manifested by nonzero values of the D and D, consti-
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tutive terms in Eq. (A15). However, the discussion of
Eq. (26) that has been given hercin indicates that this
type of anisotropy is negligible for thin shells and that the
differences between results obtained from the Sanders-
Koiter, the Love-Kirchhoff, and Donngll theories are in-
significant. Moreover, #=1 for this class of laminated-
composite shell walls, and the attenuation behavior is
governed by the nondimensional orthotropy parameter
that is given by Eq. (20a). Furthermore, Egs. (18) and
(19) indicate that the attenuation length is a constant
multiple of the orthotropy parameter that depends on the
attenuation-tolerance parameter €. For this case, trends
that are exhibited by @ are identical to those exhibited by
the attenuation length based on any value of €.

Values of the orthotropy parameter @ are presented
in Fig. 3 for single-ply, homogeneous, specially ortho-
tropic and isotropic shell walls, with arbitrary thickness,
as a function of the ratio of the principal elastic moduli,
E,/E,. For these results, the orthotropy parameter is giv-
en by Eq. (22) and is expressed in the following more

convenient form
E E
21 - =2y
S

One curve, that is essentially several coincident curves,
is shown in the figure that corresponds to general results

for 0.2 <v,,<0.35 . In addition, specific results for the
nine material systems considered herein and for a typi-
cal aluminum and a steel are indicated in the figure by
the square symbols. The results in Fig. 3 indicate that
the effect of variations in the major Poisson’s ratio on
the orthotropy parameter € are small compared to the
effect of variations in the ratio of the principal elastic
moduli. Moreover, the results show that @ decreases
rapidly as the ratio of the principal elastic moduli
increases, particularly for values of EJ/E, less than
approximately 0.1, which comresponds to most of the
contemporary orthotropic materials considered herein.
Figure 3 also shows that an isotropic material corre-
spondsto O = 1.

-1/

0= (36)

Values of the orthotropy parameter & for the sin-
gle-ply, homogeneous, specially orthotropic cylinders
investigated by Cheng and He® were also obtained. A
comparison of the results obtained in the present study
with the corresponding results of Ref. 6 are presented in
Table 2 for boron-epoxy, glass-epoxy, and graphite-ep-
oxy materials and for the cylinder radius-to-thickness ra-
tio R/h=208.311. Moreover, arange of results is shown
for Ref. 6 which corresponds to various simplifications
that were used in the equations that govern the response.

8

The actual material propertics that were used are given in
Ref. 6. In this table, the quantity used for comparison is
given by

Rel£) = 1“05 5 (37)

which is the real part of the exponent £ that appears in
the eigenfunction solution used by Cheng and Ho (n =0
in Eq. (25) of Ref. 6; see also Eq. (47) of Ref. 13), which
corresponds to the decay or attenuation of the response.
The orthotropy parameter shown in Eq. (37) is defined
by Eq. (36). The results in Table 2, show very good
agreement (less than 1% difference) for all three materi-
als. In addition, the results obtained herein that are
shown in Table 2 for the boron-epoxy material are also
in excellent agreement with the corresponding results
presented by McDevitt and Simmonds."

Values of the orthotropy parameter © are presented
in Fig. 4 for multilayered [(4),], laminates made from
the nine material systems as a function of the fiber angle
¢, which is measured from the x-axis toward the 6-axis.
The results are independent of the stacking sequence
number m and show a wide variation in @ with the ma-
terial system. The results also show, for the most part, a
wide variation in @ with the fiber angle ¢ and show a re-
duction in @ as the fiber angle increases from zero to
ninety degrees. The largest value (2.93) and the smallest
value (0.34) of @ are exhibited by the unidirectional
laminates made from P-100/3502 pitch-epoxy material,

and correspond to values of —f&—h— equal to 5.13 and
g0t

0.59, respectively. Moreover, the greatest variation in &
with the fiber angle (approximately 8.7 times) is exhibit-
ed by the laminates made from P-100/3502 pitch-epoxy
material. The smallest variation is exhibited by the lam-
inates made from the boron-aluminum material.

Results are presented in Fig. 5 that show the values
of the orthotropy parameter for [(x45/0,)],, [(0,/£45),],
[(£45/90,),],, [(90,/x45)_]1,, [(x45/0/90),]; and [(0/90/
+45) ], laminates made of IM7/5260 graphite-bismale-
imide material for values of the stacking sequence num-
berm=11to 6. Values of & range from approximately
1.53 to 0.64. These results show that the curves for the
[(£45/0,),.], and [(0,/+45)_], laminates approach 0 =
1.41 as mincreases to a value of 6, with the curve for the
[(0,/+45),], laminates converging from above and the
other curve converging from below. The higher values
of @ for the [(0,/+45),], laminates, are attributed to the
higher axial bending stiffness that is obtained by placing
the zero-degree plies at the outer surfaces of the lami-
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nates, particularly, for the lower values of the stacking
scquence number m. Similarly, the results in Fig. 5 show
that the curves for the [(£45/90,).1, and [(90,/x45) 1,
laminates approach € = 0.76 as m increases to a value
of 6, with the curve for the [(45/90,),], laminates con-
verging from above and the other curve converging from
below. Likewise, the results in Fig. 5 show that the
curves for the [(£45/0/90),], and [(0/90/+45) ], quasi-
isotropic laminates approach @ = 1.03 as m increases
to a value of 6, with the curve for the [(0/90/x45), ], lam-
inates converging from above and the other curve con-
verging from below.

Overall, the results in Fig. 5 indicate that the [(x45/
0,),], and [(0,/+45)_], laminates exhibit higher values of
the orthotropy parameter than the [(+45/0/90), ], and [(0/
90/+45),]; quasi-isotropic laminates, which exhibit
higher values of the orthotropy parameter than the [(+45/
90,),], and [(90,/+45)_], laminates. This trend corre-
sponds to a reduction in the value of @ as the axial bend-
ing and extensional stiffnesses of the laminates decrease.

Results are presented in Fig. 6 that show the effect
of the nine material systems considered herein on the
orthotropy parameter for the [(0, /+45) ], laminates.
Values of & range from approximately 1.67 for P-100/
3502 pitch-epoxy material to 1.09 for boron-aluminum
material. Most of the materials exhibit values of & in the
range of approximately 1.4 to 1.6. All of the curves show
about the same reduction in @ as the stacking sequence
number m increases.

Results similar to those in Fig. 6 are presented in
Fig. 7 that show the effect of the nine material systems
on the orthotropy parameter for the [(x45/0/90), ]; and
[(0/90/£45), ], quasi-isotropic laminates. These results
show a much smaller variation in the orthotropy param-
eter with material system and stacking sequence number
for the quasi-isotropic laminates than for the [(0,/£45)_];
laminates in Fig. 6. In particular, values of € for the qua-
si-isotropic laminates range from approximately 1.15 to
1. The largest values of & in Fig. 7 are exhibited by lam-
inates from P-100/3502 pitch-epoxy material. More-
over, the results show a larger variation in @ with
stacking sequence number for the [(0/90/+45)_], lami-
nates than for the [(¥45/0/90), ], laminates.

nbalance ricall minated Cylin

Unbalanced, symmetric laminates exhibit anisotro-
py in the form of extensional-shear coupling ( A # A,
# 0) in addition to flexural anisotropy (D s # D, # 0 ).
For these laminates, the value of the anisotropy parame-
ter # given by Eqs. (20b) and (33) is not equal to unity.
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Simplifed expressions for the anisotropy parameter A
and the first-order correction factor ¢@,. defined by Eqs.
(33) - (35), arc given by Egs. (C23) and (C24), respec-
tively. Equation (C24) indicates that the value ¢, de-
pends on coupling between the membrane and flexural
anisotropies.

Values of the orthotropy parameter & for [(+6),,];
symmetric, unidirectional laminates for the nine material
systems considered herein are also presented in Fig. 4;
that is, the curves presented in Fig. 4 for the [(x¢),,], sym-
metric angle-ply laminates are identical to those for the
corresponding [(+¢),,], symmetric, unidirectional lami-
nates. Thus, the orthotropy behavioral trends for the un-
directional laminates are identical to those discussed
previously for the symmetric angle-ply laminates, and
are also independent of the stacking sequence number
m.

Results for the anisotropy parameter 4, and the
first-order correction factor ¢, are shown in Figs. 8 and
9, respectively, for the [(+),,,], symmetric, unidirection-
al laminates with the nine material systems considered
herein and are independent of the stacking sequence
number m. The results in Fig. 8 show a substantial vari-
ation in 4, with fiber orientation and with material sys-
tem. The results show that 4 is the most pronounced
for values of the fiber angle ¢ between approximately
55 deg and 80 deg, and that the contribution of the anisot-
ropy to the attenuation behavior is essentially insignifi-
cant (less than 1.05) for values of ¢ < 25 deg and ¢ > 85
deg. Moreover, the largest variation in 4, with fiber an-
gle is exhibited by the laminates made of the P-100/3502
pitch-epoxy material and the smallest variation is exhib-
ited by the laminates made of boron-aluminum material.
Values of A4, range from approximately 1.42 for the max-
imum point on the curve for the P-100/3502 pitch-epoxy
material to a value of 1.

The results shown in Fig. 9 for the first-order cor-
rection factor ¢, for the [(+),,], symmetric, unidirec-
tional laminates indicate a substantial relative variation
in ¢, with fiber orientation and with material system, but
all of the magnitudes of ¢, are less than approximately
0.45. Moreover, the magnitude of &, is less than approx-
imately 0.2 for all of the materials except the P-100/3502
pitch-epoxy material. For the upper bound of thinness of
thin-shell theory, given by /R = 1/20, the contribution of
&, to the anisotropy factor defined by Eq. (33) is practi-
cally negligible. Equation (C24) indicates that the insig-
nificance of ¢, means that the coupling of the membrane
and flexural anisotropies are negligible for these lami-
nates. The insigniftcance of ¢, is illustrated and verified
in Fig. 10 for the [(+0),,], symmetric, unidirectional
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laminates made of IM7/5260 graphite-bismalcimide ma-
terial (black curves) and made of P-100/3502 pitch-cp-
oxy material (gray curves), for /R = 1/20. The finely
dashed curves shown in Fig. 10 correspond to 90%-de-
cay lengths for which the anisotropy is neglected. In
contrast, the solid curves and the coarsely dashed gray
curve include the effect of the membrane anisotropy and
are shown for values of £ =0, I, and 1.5. For these val-
ues, results that correspond to the Sanders-Koiter theory

and the Love-Kirchhoff theory are given by | =% and

pL =1, respectively. Results that correspond to Donnell’s
equations are given by u=0. The solid curves in Fig.
10 for p = [ and 1.5 are based on the exact solution that
uses Eq. (20b) for the anisotropy factor. The correspond-
ing curves that are based on the approximate formula for
the anisotropy parameter that is given by Eq. (33) are
identical. The solid curves and the coarsely dashed gray
curve indicate that varying [ yields a small effect, which
implies that all three shell theories yield essentially the
same results and that #= 4, for the [(+¢),,], symmet-
ric, unidirectional laminates. Comparing the solid and
finely dashed curves in Fig. 10 also indicates that ne-
glecting the membrane anisotropy underestimates the
bending boundary-layer decay length, by as much as ap-
proximately 31% and 21 % for shell walls made of P-100/
3502 pitch-epoxy and IM7/5260 graphite-bismaleimide
materials, respectively.

Values of the orthotropy parameter @ for [(+45,/0/
90),.], and [(0/90/+45)).], laminates made of the nine
material systems considered herein are also presented in
Fig. 7. More specifically, the values of & for these lam-
inates are identical to the values for the corresponding
quasi-isotropic laminates. Results for the anisotropy pa-
rameter ~#, defined by Eq. (34) are shown in Fig. 11 for
[(+45,/0/90), ], and [(0/90/+45,),]; laminates made of
the nine material systems considered herein. The results
in Fig. 11 show no significant variation in -4, with the
stacking sequence number m, and only a slight variation
(less than approximately 9%) with material system. Val-
ues of A4, range between approximately 1.1 and 1. Cor-
responding results for the first-order correction factor &
defined by Eq. (35), that are not shown herein, were ob-
tained that indicate that all of the values of ¢, for the
[(+45,/0/90),], and [(0/90/+45)) ], laminates are less
than approximately 0.1. These values indicate that the
contribution of ¢, to the anisotropy factor defined by Eq.
(33) is practically negligible. Thus, # = #, for these
laminates. The values of 4, shown in Fig. 11 suggest that
neglecting the anisotropy would, at most, underestimate
the bending boundary-layer decay length by approxi-
mately a 10%. The insignificance of ¢, also means that
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the coupling of the membrane and flexural anisotropies
are unimportant with regards to the primary effect of the
individual shell anisotropics that is captured by the pa-
rameter A4,

Balanced, Unsymmetrically Laminated Cylinders

Balanced, unsymmetric laminates may, in general,
exhibit anisotropy in the form of coupling between pure
bending and twisting (D, # D, # 0 ) and coupling be-
tween membrane and bending action, which is manifest-
ed by nonzero values for any of the subscripted B-terms
in Eq. (A15). These laminates do not, however, exhibit
extensional-shear coupling ( A, = A, =0). For the un-
symmetric laminates that are discussed subsequently, the
first ply in the stacking sequence is the innermost ply of
a cylinder. Simplifed expressions for the anisotropy pa-
rameter 4, and the first-order correction factor &, de-
fined by Egs. (33) - (35), are given by Egs. (C27) and
(C29), respectively. Equations (C28) and (C29) indicate
that the value ¢, depends on coupling between the flex-
ural anisotropy and the anisotropy caused by unsymmet-
ric lamination.

Results for regular, antisymmetric angle-ply lami-
nates are shown in Figs. 4 and 12-16. In particular, val-
ues of the orthotropy parameter & for [(xd),];
unsymmetric laminates made of the nine material sys-
tems considered herein are also presented in Fig. 4; that
is, the orthotropy-parameter curves presented in Fig. 4
for the [(x0),], symmetric angle-ply laminates are also
identical to those for [(+¢),]; unsymmetric laminates.
Thus, the orthotropy behavioral trends for the [(+4),1;
unsymmetric laminates are identical to those discussed
previously for the corresponding symmetric angle-ply
laminates, and are also independent of the stacking
sequence number m.

Results for the anisotropy parameter 4, defined by
Eq. (C27) are shown in Fig. 12 for 2-ply [+$]; unsym-
metric laminates made of the nine material systems con-
sidered herein. The results in Fig. 12 show a substantial
variation in -, with fiber orientation and with material
system, and show that #, is the most pronounced for val-
ues of the fiber angle ¢ between approximately 15 deg
and 60 deg. Moreover, the largest variation in 4, with fi-
ber angle is exhibited by the laminates made of the P-
100/3502 pitch-epoxy material and the smallest variation
is exhibited by the laminates made of boron-aluminum
material. Values of 4, range from approximately 0.75
for the minimum point on the curve for the P-100/3502
pitch-epoxy material to a value of 1. The results in Fig.
13 show the variation in 4, with the fiber angle ¢ and
the stacking sequence number m for [(+¢),]; unsym-
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metric laminates made of the P-100/3502 pitch-cpoxy
material. These results show a rapid decline in the im-
portance of 4, that is manifested by the curve moving
closer to A4, = |, as the stacking sequence number in-
creases. For m=2,095< A4 < [.

Results for the first-order correction factor ¢, are
shown in Fig. 14 for 2-ply [+¢], unsymmetric laminates
made of the nine material systems considered herein.
The results in Fig. 14 also show a substantial variation in
&, with fiber orientation and with material system. How-
ever, the maximum magnitude of ¢, is less than 0.07 for
all of the material systemns. Results are presented in Fig.
15 that show the variation in ¢, with the fiber angle ¢
and the stacking sequence number m for [(x4) ]; un-
symmetric laminates made of the P-100/3502 pitch-ep-
oxy material. These results show significant reductions
in @, with an increase in the stacking sequence number.

Overall, the results in Figs. 14 and 15 indicate that
the contribution of ¢, to the anisotropy factor defined by
Eq. (33) is negligible for the upper bound of thinness giv-
en by h/R = 1/20, which means that # = 4, Thus, the
results in Fig. 12 for the two-ply [+¢]; unsymmetric
laminates indicate that neglecting the shell anisotropy
overestimates the bending boundary layer, by as much as
approximately 33% and 22% for shell walls made of P-
100/3502 pitch-epoxy and IM7/5260 graphite-bismale-
imide materials, respectively. The insignificance of ¢,
also means that the coupling of the flexural anisotropy
and the anisotropy caused by unsymmetric lamination is
unimportant with regards to the primary effect of the in-
dividual shell anisotropies. The insignificance of &, is il-
lustrated in Fig. 16 by the gray and by the black curves
for the laminates made of P-100/3502 pitch-epoxy and
IM7/5260 graphite-bismaleimide materials, respective-
ly. The solid black and gray curves are for the upper
bound of thin-shell theory that is given by h/R = 1/20.
The finely dashed curves shown in the Fig. 16 corre-
spond to 90%-decay lengths for which the anisotropy is
neglected. In contrast, the solid curves include the effect
of the shell anisotropy and are shown for values of L =0,
I, and 1.5. The solid curves for L = | and 1.5 are based
on the exact solution that uses Eq. (20b). The corre-
sponding curves that are based on the approximate for-
mula for the anisotropy parameter that is given by Eq.
(33) are identical. The solid curves indicate no signifi-
cant effect of varying 1, which implies that all three shell
theories yield essentially the same results for the [+];
unsymmetric laminates. For [(+0)_]; unsymmetric lam-
inates with m> | and made from any of the nine material
systems considered herein, the results in Figs. 12 through
15 indicate that neglecting the shell-wall anisotropy will
have a small effect on the calculation of the bending
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boundary-layer decay length.

Values of the orthotropy paramcter @ and the
anisotropy paramcter A4, for (0, /90,); unsymmetric
cross-ply laminates are shown in Figs. 17 and 18 for the
nine material systems considered herein and as a func-
tion of the percentage of zero-degree plies. For this class
of laminates, Eq. (20b) simplifies to Eq. (34); that is, #=
~,. This simplification means that the anisotropy param-
eter is independent of LI, which means that all three of the
shell theories considered herein yield identical results.

The results in Fig. 17 show a large variation in &
with the percentage of zero-deg plies for most of the ma-
terial systems. In addition, the results show a large vari-
ation in € with material system for the laminates that are
dominated by ninety-deg plies (less than approximately
10% zero-deg plies) and by zero-deg plies ( more than
approximately 80% zero-deg plies). Values of € vary the
most for laminates made of P-100/3502 pitch-epoxy ma-
terial, with values that range from approximately 0.3 to
2.93. Most of the materials exhibit values of @ in the
range of approximately 0.5 to 2.1.

The results in Fig. 18 also show a large variation in
A, with the percentage of zero-deg plies for most of the
material systems, and show a large variation with mate-
rial system for laminates with less than 70% zero-deg
plies. Moreover, the results show that 4 is the most pro-
nounced (most different from a value of 1) for laminates
with approximately 15% to 30% zero-deg plies. The
largest variation in 4, with percentage of zero-deg plies
is exhibited by the laminates made of the P-100/3502
pitch-epoxy material and the smallest variation is exhib-
ited by the laminates made of boron-aluminum material.
Values of 4, range from approximately 0.57 for the min-
imum point on the curve for the P-100/3502 pitch-epoxy
material to a value of 1. Thus, in some cases neglecting
the shell wall anisotropy overestimates the bending
boundary layer, by as much as approximately 75% for a
shell wall made of P-100/3502 pitch-epoxy material.
This result is illustrated in Fig. 19 by the gray curves.
Similar results are presented in Fig. 19 for (0,/90,); un-
symmetric cross-ply laminates made of IM7/5260 graph-
ite-bismaleimide material (black curves). The solid
black and gray curves include the effect of the shell
anisotropy and the finely dashed curves shown in the fig-
ure correspond to 90%-decay lengths for which the
anisotropy is neglected. The results in Fig. 19 show that
including the effect of anisotropy is particularly impor-
tant for laminates with less than approximately 70%
zero-deg plies.

lanced Ily Laminated Cylinder

Unbalanced, unsymmetric laminates may, in gen-

nsymmetri
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eral, exhibit (ull anisotropy in the form of coupling be-
tween pure bending and twisting (D # Dy, # 0 ) and
coupling between membrane and bending action, which
is manifested by nonzero values for any of the subscript-
ed B-terms in Eq. (A15), and extensional-shear coupling
(A, # A, #0). The expressions for the anisotropy pa-
rameter ¢, and the first-order correction factor &, that are
given by Egs. (C2) - (C22) indicate that 4, exhibits cou-
pling between the membrane anisotropy and the anisot-
ropy that is caused by unsymmetric lamination, and that
&, exhibits coupling between all three types of anisotro-
pies. One family of laminates that exhibits all of these
anisotropies is the (70,/0); unbalanced, unsymmetric
laminates withp>0and q#0.

Values of the orthotropy parameter € and the
anisotropy parameter A, for (70,/0,); unbalanced, un-
symmetric laminates are shown in Figs. 20 and 21, re-
spectively, for the nine material systems considered
herein and as a function of the percentage of seventy-deg
plies. The results in Fig. 20 show a large variation in €
with the percentage of seventy-deg plies for most of the
material systems. The results also show a large variation
in @ with material system for the laminates that are dom-
inated by zero-deg plies (less than approximately 20%
seventy-deg plies). Values of @ vary the most for the
laminates made of P-100/3502 pitch-epoxy material,
with values that range from approximately 0.5 to 3.

The results in Fig. 21 also show a substantial varia-
tion in 4, with the percentage of seventy-deg plies for
most of the material systems, and a large variation with
material system for laminates with between approxi-
mately 45% and 100% seventy-deg plies. The largest
overall variation in .4, with percentage of seventy-deg
plies is exhibited by the laminates made of the P-100/

3502 pitch-epoxy material and the smallest variation is
exhibited by the laminates made of boron-aluminum ma-
terial. Values of A, range from approximately 1.4 to
0.95, which correspond to the maximum and minimum
points, respectively, on the curve for the P-100/3502
pitch-epoxy material.

Results for the first-order correction factor £, were
also obtained for (70p /0q)T unbalanced, unsymmetric
laminates made of the nine material systems considered
herein, but are not included in the present paper. These
results also show a substantial, relative variation in £,
with the percentage of seventy-deg plies, but overall the
magnitude of ¢, is less than approximately 0.25 for the
P-100/3502 pitch-epoxy material and less than 0.1 for
the other materials. These results indicate that the con-
tribution of ¢, to the anisotropy factor defined by Eq.
(33) is negligible for the upper bound of thin-shell theory
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that is given by h/R = 1720, which means that 4= A,
Thus, the results in Fig. 21 suggest that in some cases ne-
glecting the shell-wall anisotropy may overestimate the
bending boundary-layer decay length and in other cases,
may underestimate the decay length. The insignificance
of ¢, also means that the contribution of the flexural
anisotropy to the coupling of the anisotropies is negligi-
ble. The insignificance of ¢, is clarified in Fig. 22 for
laminates made of P-100/3502 pitch-epoxy material -
(gray curves) and of IM7/5260 graphite-bismaleimide
material (black curves). The solid black and gray curves
are for the upper bound of thinness given by h/R = 1/20.
The finely dashed curves shown in the figure correspond
to 90%-decay lengths for which the anisotropy is ne-
glected. In contrast, the solid curves include the effect of
the shell anisotropy and are shown for valuesof £ =0, 1,
and 1.5. Moreover, the solid curves for L = 1 and 1.5 are
based on the exact solution that uses Eq. (20b). The cor-
responding curves that are based on the approximate for-
mula for the anisotropy parameter that is given by Eq.
(33) are identical. The solid curves indicate a negligible
effect of varying {1, which verifies that # = +, and im-
plies that all three shell theories yield essentially the
same results for the (70,/0,); unbalanced, unsymmetric
laminates. In addition, the results show that neglecting
the shell wall anisotropy, for the most part, underesti-
mates the bending boundary-layer decay length, by as
much as approximately 16% and 6% for shell walls made
of P-100/3502 pitch-epoxy and IM7/5260 graphite-bis-
maleimide materials, respectively, and with approxi-
mately 20% seventy-deg plies. In addition, the results in
Fig. 22 show that neglecting the shell wall anisotropy un-
derestimates the bending boundary-layer decay length,
by as much as approximately 31% and 20% for shell
walls made of P-100/3502 pitch-epoxy and IM7/5260
graphite-bismaleimide materials, respectively, and with
approximately 100% seventy-deg plies. There is only a
very small range shown in Fig. 22 where neglecting the
shell wall anisotropy overestimates the bending bound-
ary-layer decay length, and for this region, the effect is
negligible.

Concluding Remarks

An analytical study of the attenuation of bending
boundary layers in both balanced and unbalanced, sym-
metrically and unsymmetrically laminated-composite,
thin cylindrical shells has been presented for nine con-
temporary material systems. The analysis is based on the
linear Sanders-Koiter shell equations and contains the
Love-Kirchhoff shell equations and Donnell’s equations
as special cases. With this analysis, two nondimensional
parameters have been indentified that characterize and
quantify the effects of laminate orthotropy and laminate
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anisotropy on the bending boundary-layer decay length
in a very general and encompassing manner. The anisot-
ropy parameter includes the effects of anisotropy in the
form of coupling between pure bending and twisting that
appears in many symmetric laminates to some extent,
coupling between extension and shear that is present in
unbalanced laminates, and coupling between membrane
and bending action that is present in unsymmetric lami-
nates.

A substantial number of structural design technolo-
gy results for the bending boundary-layer decay length
have been presented for a wide range of laminated-com-
posite shell structures that should be useful additions to
the structural designer’s collection of preliminary design
tools. Moreover, the analysis and results should provide
additional physical insight into the fundamental behavior
of general laminated composite shell structures and pro-
vide a common basis for assessing bending boundary-
layer attenuation for the vast range of laminate construc-
tions that are possible. Furthermore, the results should
be useful for the design of specimens for material char-
acterization tests, for instrumenting structural verifica-
tion tests, and for defining finite-element meshes. Forall
the laminate constructions considered in the present
study, the results show that the differences between re-
sults that were obtained with the Sanders-Koiter shell
equations, the Love-Kirchhoff shell equations, and Don-
nell’s equations are negligible. The results also show
that the effect of anisotropy in the form of coupling be-
tween pure bending and twisting has a neglible effect on
the size of the bending boundary-layer attenuation length
of the balanced, symmetrically laminated cylinders con-
sidered. Moreover, the results show that the coupling of
the membrane and flexural anisotropy and the anisotropy
caused by unsymmetric lamination is generally unimpor-
tant with regards to the primary effect of the individual
shell anisotropies on the bending boundary-layer decay
length. The only exception encountered was for unbal-
anced, unsymmetrically laminated cylinders for which
coupling of the membrane anisotropy and the anisotropy
caused by unsymmetric lamination is a primary effect, as
expected. The results also show that in some cases ne-
glecting the shell anisotropy results in underestimating
the bending boundary-layer decay length and in other
cases it results in an overestimation.

Appendix A: Sanders-Koiter Equations
16.17

The linear Sanders-Koiter shell equations are
presented in this appendix for a right-circular cylinder
with a radius that is given by R. For these equations, x
and O denote the axial and circumferential coordinates,
respectively. First, the equilibrium equations are pre-
sented, then the kinematic equations and the constitutive

13

equations are presented. Last, the boundary conditions
are given for a complete right-circular cylinder at an
edge that is given by a constant value of the axial coordi-
nate, X.

The equilibrium equations are given in a form sim-
ilar to those found in Ref. 22; that is,

oN, 10N, ¢, dM, _
H*Ro6 ool T4T0 (Al
Mo LB G0+ S0 g,20 a2
9, 19 M g=0 (A3)
M, 1™ _q,=0 (A4
Mo 10 _q,=0 (AS)

where N,, N, and N,, are the membrane stress result-
ants; Q, and Qg are the transverse shear-stress resultants;
M,, M,, and M,, are the bending stress resultants; q,, qg,
and q, are the applied surface tractions; and c, and c,
are constants that identify the equations of other shell
theories that are considered herein. In particular, the
Sanders-Koiter equations are given by ¢, =c, =1 and
the Love-Kirchhoff equations are give by ¢, = 1 and ¢, =
0. Donnell’s equations are given by ¢, = ¢, = 0. This
convention is used throughout the present study.

inemati uations

The kinematic equations are given by

g =9 (A6)
sn_iav i
a—Rag R (A7)
You Sy +iS (AS)
pr=-9¥ (A9)
B%=%‘v-ﬁ%% (A10)
o_Cfav_ 12
B= (% -+ 3%) (A1)
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L OB _ 9w
K‘—W_—W (AIZ)
" laBe_Cav | O'w
K =R96 " R0 R 90" (A13)
= (B B) i

2 I'w B d
A R(c+ )a% ZRQE (A14)

where u, v, and w are the axial, circumferential, and nor-
mal displacements of a point of the shell middle surface;
80

X

. o
€, and Y are the membrane strains; B3, Be, and

B are the rotations; and X3, K5, and K are the bend-
ing strains. The displacement w is positive when it is
outward from the cylinder reference surface.

Constitutive Equations

The isothermal constitutive equations are given in
matrix form by

N} [AuA.AGB,B.B,|[ 2
N, ApAy AzaiBn: B, By &
Nxﬂ = AlﬂAlﬁAﬁéBlﬂB!‘SB“ ‘Y“)" AlS
M, [ " |BuBg Blé;Dll D, D X3 ( )
M, B, By, BZééDIZ D, Dy X°
M, By By B Dig Dy D K:
4 x8

where the subscripted A, B, and D terms of the matrix
are the stiffnesses of laminated composite shells that are
obtained from the Love-Kirchhoff shell theory. More-
over, the constitutive terms in Eq. (A15) are identical to
those for laminated-composite plates that are given in
Ref. 18, p. 198.

n ndition

The boundary conditions for an edge that is deﬁned
by a constant value of the axial coordinate x are given by

N,=N(®) or u=i(0) (A16)

N, + %(c, + icz)Mxe =T(®) or v=¥(6) (Al7)

M, _ ¢ .
Q+g g =0 o w=%O) (AlS)

M, =M@® o P =p® (A19)

14

where G(8), ¥(8), and W(0) arc applied edge displace-
ments; P(8) is an applicd edge rotation; and N(©),
T(8),9V(8), and M,(8) are applied edge loads.

endix B: Equations f xisymmet

The linear Sanders-Koiter shell equations that are
presented in Appendix A for a right-circular cylinder
with a radius R are specialized in this appendix for the
case of axisymmetric behavior. For these equations, x
and 6 denote the axial and circumferential coordinates,
respectively. The specialization to axial symmetry is
conducted by eliminating all terms in the equations of
Appendix A that are differentiatied with respect to the
circumferential coordinate, 8. First, the equilibrium
equations, the kinematic equations, and the constitutive
equations are presented. Then, the boundary conditions
are given for a complete right-circular cylinder at an
edge that is given by a constant value of the axial coordi-
nate, x. Last, the axisymmetric equations are manipulat-
ed into a single ordinary differential equation in terms of
the normal displacement w(x).

Equilibrium Equations
The equilibrium equations for axisymmetric behav-
ior are given by

ddl} (B1)

P GQu+ 52 +,0=0 (B
N R +q =0 (B3)
(B4)

dM,e__Qe (BS)

where the membrane stress resultants N,, Ny, and N,g;
the transverse shear-stress resultants Q, and Qg the
bending stress resultants M,, M,, and M, and the
applied surface tractions q,, g, and q, are functions of
only the axial coordinate, x.

Kinematic Equations

The kinematic equations are given by
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g=3 (B6)
&= B7)
Yo=g¥ (B8)
Br=- (BY)
By =g (B10)
Br=35r ®11)
K‘:-(L—‘i:= f;;ﬁ (B12)
K5=0 (B13)

o, dBS
K:a='lliBn+ d%(e:%(cl'*%cz)% (B14)

where the middle-surface displacements u, v, and w; the
membrane strains €, €2, and Y% the rotations B}, B%,

and B ; and the bending strains k and X3, are func-
tions of only the axial coordinate, x.

Constitutive Equations

“The isothermal constitutive equations reduce to

N.) [AsAsALB.BLB|[
N, ApAy AZﬁiBlZ B, By &
Nl _[AeAsAGB BBl m |
M, [ 7|B, B, BxsiDn D, Dy K; (B15)
Me BIZ Bzz BzoiDlz Dzz Dzs 0
M, By, By By Dy Dy D &

b 28

where the subscripted A, B, and D terms of the matrix
are the usual constitutive terms of classical Love-Kirch-
hoff-type laminated composite shell theory or classical
laminated plate theory (e.g., see p. 198 of Ref. 18).

Boundary Conditions
The boundary conditions for an edge that is defined
by a constant value of the axial coordinate x are given by

I\I,‘=N,l or U=‘ﬁ

(B16)

N“,+R(L +1201)M‘9=T or V=V (B17)
Q=V o w=Ww (B18)
M,=M, or B=p (B19)

where the applied edge displacements U, ¥, and W; the
applied edge rotation B and the applied edge loads N,,

T, ¥V, and M, are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtained
by first noting that integration of Eq. (B1) yields

N,=—j g, dx +C=N(x) (B20)

where C is a constant of integration that is determined
from the boundary condition given by Eq. (B16). Next,
Eqgs. (B2) and (B5) are combined to get

dN, . 1 1. \dM, _
I +§(Cx +§C:) o tax=0  (B2D)

For convenience, the parameter

p=c, +ic (B22)

is introduced such that the Sanders-Koiter equations are

given by U =% and the Love-Kirchhoff equations are

given by L= 1. Donnell’s equations are given by u=0.
Similarly, the function

T =N,y + kM, (B23)
is introduced so that Eq. (B21) becomes
aLiq=0 (B24)

and the corresponding boundary condition given by Eq.
(B17) becomes

T=T or v=¥ (B25)
Integration of Eq. (B24) yields
=—fq9dx +C=T() (B26)
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where C is a constant of integration that is determined
from the boundary condition given by Eq. (B25). Next,
Eqs. (B3) and (B4) are combined to give

dM, N

Tﬁ(’_ l’+q(x) 0

(B27)
The next step in the analysis is the simplification of
the constitutive equations. First, by using Eqs. (B8) and
(B22), Eq. (B14) is expressed as
ke, = by, (B28)

x0 R x8

By using Eqs. (B23) and (B28), the constitutive equa-
tions are expressed as

Nl All AIZZIG Bll 8:
NO AlZ AZZ KZ& BIZ E;
= 2
T [T |ARuAuAgBy|) (B29)
M, B, B, Blo D, |\x
and
M9=B12€:+B228‘;+BZ6 x8+D12K: (B?’O)
where
B
Ro=A,+n(B) Qe (®B31)
B
K%=Azé+u(%)—}:—° (B32)
= h)B& , ,ofh)’'D
K“_A“+2u(R) = 'HL(R) h‘? (B33)
D
B=B,+ u(%) e (B34)
D
B,=B,+u(f) 32 (835)

The motivation for writing the constitutive equations in
this form is that the matrix equation given by Eq. (B29)
is the only part of the of the full constitutive equations
that appear in the strain energy density function, which
is used in the present paper to determine the correspond-
ing positive-definiteness conditions. With these simpli-

fied constitutive equations and Egs. (B6) - (B8) and
(B12), Eq. (B20) is expressed as
A QU p WL R dv_p dW_goy_0 (B3
It d R 16 X il d 32 (

16

and Eq. (B26) is expressed as

+A o+ A

th

C.‘Cl.

(B37)

o.lo.
e
Wlé

Equations (B36) and (B37) are then solved for dx and

dx toget

KMN(X) - K,,,T(X)
Auxw - Kzus

(RAu-A KR + (BB~
AA-K

du _
dx

AB.)4w

+ dx”  (B38)

AnT(X) - KIGN(X)
Anxw— sz'

dv _
dx

(A,:Xm—A,,K,,,) (A..B,, A,,B..)d

x*
A“K“—KTG (B39)

+

Equation (B39) indicates that the circumferential dis-
placement v(x) becomes uncoupled from the axial dis-
placement u(x) and the normal displacement w(x)
when A=A =B =0, which implies that A = A,
=B,,=B,,=D,,=0. In addition, the constitutive equa-
tion, Eq. (B29), indicates that N,, Ny, and M, become
uncoupled from the torsional, shear strain Y, when
A,=A,=B,=0, and that T, that is defined by Eq.
(B23), becomes uncoupled from €7, €5, and ;. Fur-
thermore, Eq. (B30) indicates that M, becomes uncou-
pled from v;, when B.,=0, which implies B,=D,=
0.

Next, Egs. (B38) and (B39) are then substituted
into Egs. (B6) and (B8), and the resulting expressions for
€ and Y3, along with Egs. (B7) and (B12) are substitut-
ed into the constitutive equations, (B29). This action
converts the strains and stress resultants in Eq. (B29) into
functions of the displacement w(x). Substituting the ex-
pressions for N, and M, into Eq. (B27) yields the bend-
ing boundary-layer equation that is given by

cdw+cdw+c,w=c4(x)

S (B40)

The constant coefficients are given by
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KmB:l + AnB:a_ 2K|,,B”B.°

C,=D,!I- (A,IXM—KL)D” (B41)
Cz='%B|z
AA-AAB,+[AA-AALB,
-& | QHK:EK; Pe) G

(AvAu- AR -A K- ALK+ 28R A,
RY{AK.-K)

C,= (B43)

The function C,(x) is given by

Cx)=q,(x)+
(K,Au- A,,L)N(x) + (A.,X o AX,K,,,)T(X)

R(A”K“ - Kllb)
d'N d'T
IIKM—XREBIO v ? AIIEIB_ nxm )
* : (dex +_( &) el (B4

These expressions are simplifed further by introducing
the following expressions

3., = Kloxu_AuKm B45
" (A nA n— Azu)K“ -A “Kz“ - Anxlw + 2A12K wxzs ( )
AA-K
= 114V 66 16 46
an (A,,AH—AZ,,)K“—A"K;—AZAL'*'ZA,,KWKM (B )
Aan'Aane

= B47
au (AnAu_Alu]Koe"Auxzu"AzzK:lo"’2A|2K16K16 ( )
Bz: == (anBu +3,B,,+ azaB 16) (B48)

e=1 _Kmel"'AuBTﬁ_zowqu (B49)

(AIIKGG_ Kz|6)Du

By using Egs. (B45) - (B49), Egs. (B41) - (B43) are
expressed as

C,=D,e (B50)
=25
=32 B51)

17

: (B52)

Similarly, for the case where the second derivatives of
N(x) and T(x) are zero valued, Eq. (B44) becomes

2aN(K) + 2,700

C(x)=q.x) + Ra,

(B53)

The desired form of the bending boundary-layer equa-

‘tion is obtained by dividing Eq. (B40) by C,; that is,

d'w d’'w _
Ix +4S ax +4Qw = P(x) (B54)
where the constants S and Q are given by
Cz Bal
S lr=al —— BSS
4C, 2R522D115 ( )
C 1
Q= 2=— 56
4C, 4R'a;D e ®39
The function P(x) is given by
C i, N a,T
P(x) = (%) = 9.(%) i (x) +3a,I(x) (B5T)

C, D¢ Ra,;D,e

for the special case when the second derivatives of

N(x) and T(x) are zero valued. The quantity Due that
appears in Eqs. (B54) - (B56) is sometimes referred to,
in some contexts, as a reduced bending stiffness.'

Appendix C: Anisotropy-Factor Equations
The first-order approximation of the anisotropy
factor A# that is used herein is given by

,4=,40[1+u€,(%)] (CH

where A, is the value of Eq. (20b) with it = 0 in the
terms with the overbars. This expression is given by

-1

(AnAn - Azxz) a,

1
b,,
e
A azDy e,

which is the anisotropy factor that corresponds to Don-
nell’s equations. The terms a,;, b,,, and ¢, are given by

A= (C2)
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AloAlh—AllAM

a,= . - (C3)

(A,,A“—-A”)Am—A“AM—AIZA,,\'!-ZA.,A.,,A“
AIIAM-AIIG

an= . 7 ; (C4

(AuAn"AII)Am_AuAm_A11A|b+2AuAmAzs
AIZAKQ—AIIAlb

Ay = X : : (C5)
(AnAzz_Anz)A«,"AuA:s—AnAm""2A:1AmA:o

by=- (aIZBll +a,B,+a,B m) (C6)

eo=1—A66B?|+A”B36—2A16B“Bw (C7)

(A“A“— Azlé)Dn

The term ¢, is a first-order correction to the results that
correspond to Donnell’s equations and is given by

_ v aanl%(az:‘n + a:z:‘u) + 2azz(bm¢o_ bzl‘n) = 2a,;b e,

= (C8)
4a,e, [V auDye, by
where
2 AIGBH—AHBHS
€= ( T\ ){Dl6(AHA66_A216)+
(AuAse‘Axe) Db
_BIG(BHA&S"’AIIB%)+Al6(AllBsé+B%6) (C9)
Biefie+ Badis+ B
a,,= 1616+ Baslzs + Boefes ; (CIO)
[(AnAzz“Aiz)Aw'AllAia‘AzzA’m*'ZAlewAzo h
aln=—2 Bi81s+ BiBre+ BasBes ; (Cll)
[[AnAn'Aiz)Aw‘AnA’ze“AzzAfo*ZAquAza h
Bih,o+B B
a,,= 1616+ Baghos + Behos : (C12)
(AnAzz'Azlz)Au‘AnAga—Aquxe*ZszAwAza h
a,D
bm:‘(auzBu+a|22sz+alzoBlo+%) (C13)
and

fie = AZG(A]HSA n AllAib) +

Am[Am(A.,AmAL)—2A.2AHAM] (C14)

= A ALA - ALAL)+

AM{AM(A,,AH +AL)- 2A”A,:A3,.l (CI5)
fu=2(AnAu- A AL (Adn- AL (Cl6)
2o =(AuA-AAL)AAL-AAL)  (CI7)
o= (AcA-AAL)AAL-AL)  (CI8)
€u=(AuA - A“Am)z (C19)

hl() = szAeo(Alesa - Azxz) + AuAm(szAzc_ AIGAD)

+ AusAzz(A |2A 16~ A nAzb) (C20)

ho=— ALA A AL-AL) + AL(A A, - 243)

+ AnA:o(ZA sz 16~ A que) (C2 1)

he = Z(AnA:s_Alexo)(AnAzz"Aiz) (C22)

Special Cases for and @,

Simplifications to »#, and ¢, are presented below
for unbalanced and balanced, symmetric laminates and
for balanced, unsymmetric laminates, that include the
subclasses of general antisymmetric laminates, antisym-
metric cross-ply laminates, and antisymmetric angle-ply
laminates.

nbalanced and balanced. s 1l minate:
For unbalanced, symmetric laminates, A # 0, A,; # 0,
and B,, =B, =B,,=B =B, =B = 0. For this special
case,

174
(A 1A - Ai:)('\ A Azm)

A= (C23)

Al (AnAn-AL)Aw- ALAL - AnAl e 2A A A,

which agrees with the corresponding equations given by
Reuter, and

Dxe(Alem—Aqus) s
ml(A nAn - A'lz)A 66

Iz
2h[D“(A“A“—A§6)]
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—A AL - A AT+ 2A A A (C24)

For balanced, symmetric laminates, A, = A, =0 in
addition to the subscripted B-matrix constitutive terms.
For this special case, 4, =1 and ¢, =0.

Balanced, unsymmetric laminates, For balanced,

unsymmetric laminates, A, = A, = 0, which yields the
following simplified expressions

3 2

1 B, B, (€25)
e = — — ——
° AD, AD,
A AHB|2 A Bll (C26)
\/AnDn(AnAn 21:)30
A=y [L+A]" (€27
el __2 B16 Dlﬁ B11B16 _ BIGB& (C28)
A(>6h AllDll AoeDu
¢ 2B,{A.B.-AB.)
e, = Z(T+T ‘(l+2A) + (C29)

Adn/ AD(AuAL- AL,

For the subclass of balanced, antisymmetric laminates,
D, = D) = 0 in addition to the shear-extensional cou-
pling terms, which yields the following simplification

ZB}6
AeoDu

Bll B66
@ Ay
66

(C30)

that is applied to Eq. (C29). For the subclass of (bal-
anced) antisymmetric cross-ply laminates, B, = B¢ =
B, =B, =0,B,,=-B,,, and D, =D, = 0 in addition
to the shear-extensional coupling terms. For this special
case, ¢, = 0 and

-in

A=y e,|1- AaBy (C31)
\/AnDn(AnAzz—A.u)eo
where
B’.’
e=1-—7— C32
AHI)ll ( )

For the subclass of balanced, antisymmetric angle-
ply laminates, B;, =B, =B;; =B4=0 and D\, =D, =

0 in addition to the shear-cxtensional coupling terms.

4
For this special case, A,=x/e, where
2
BI6

=1]-
%= T A.D.

(C33)

which agrees with the corresponding equations given by
Reuter?, and

B ln(A 11B26 -A \:B I6)

é.= (C34)

2800/ AD (A AL - AL,

Further simplifications can be made to Egs. (C31)
and (C32) for [0/90/../90] antisymmetric-cross-ply-
laminate shell walls with an even number of layers that
have identical material properties. For these laminates,
the plies are specially orthotropic and their principal ma-
terial directions are oriented at 0 deg and 90 deg to the
cylinder axes in an alternating manner. In particular, the
major principal axes of the odd-numbered and even-
numbered plies are aligned with the x- and 6-axis, re-
spectively, with the first ply in the stacking sequence lo-
cated at the inner surface of the cylinder. Moreover, the
odd-numbered plies have the same thickness and the
even-numbered plies have the same thickness, but these
two thicknesses are, in general, different. The laminate
stiffnesses are given in Ref. 18 (see pp. 224-226) in terms
of the number of layers N, the thickness ratio M, the ratio

of the principal elastic moduli F= % , for which O0<F
1

<1, and the reduced, plane-stress lamina stiffnesses.
The thickness ratio is defined by

N
M E (k) - 2 t(k) #

k=13 k=

(C35)

where t,, denotes the thickness of the k™ ply and _

k)

m+[’)) (C36)

N-|
h= Z [(k)+ i [(k)

kald .

is the total laminate thickness. For the antisymmetric
cross-ply laminates, t,;, and t,, are the thicknesses of the
0-deg and 90-deg layers, respectively, and are denoted
herein by t, and t, respectively. Substituting the non-
zero laminate stiffness expressions for this class of anti-
symmetric cross-ply laminates that are given in Ref. 18
into Eqgs. (21), (C31), and (C32) yields
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(- -BHQIM+ HM+F)

0= | M+ +MB —[(1 + MFv 7| (©3D
] JIMEI-B)v, |
A= «/?0[1 + ———%I (C382)
where

= [[I -(I1-FHQIM+ DH(M+F)x

172
(M +F)(1 +MP) -[(M+ l)FVIz]z)eo] (C38b)

e =1- 12M’(1 -F)’ C39
TN DM+ P -(1-pQ P
Q=i+ M- ) (C40)

= 1+M+N2(M+I)’

and v, is the major Poisson’s ratio. For the special, but
practical, case of regular antisymmetric cross-ply lami-
nation, all plies have the same thickness and Eqs. (C37)

- (C39) reduce to
aFv, V[
0=[1—(ITF”) (C41)
A= 2/2 1+ /I2v,F1-F) (C42)
N(1 + P/ [(1 +FY - @Fv)]e,
3 (1-FY
&=1-37 (TTF) (C43)
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Table 1: Lamina properties.

Material Systems = 0.0

S-glass- 'K;e‘vxz&@, M7 | AS4/ AS4 | Boron- IM7/ P-100/

“Tepoxy | T epoxy 35260 | 3502 3501-6 epoxy | PETLS 3502 -
33 7.5 11.02 2.1 18.5 2001 | 2958 | 2035 | 535 |
21 1.7 08 1457 1.64 1.30 268 | 116 0.73
0.23 0.25 034 | 0258 0.30 0.30 0.23 020 | 031
7.0 0.80 0.33 0.860 0.87 1.03 0.81 061 | 076 |
32 3.5 222 | 00125 | 025 0167 | 338 | 014 | -064
11.0 11.0 43.89 1491 16.2 156 | 1683 | 1685 172 |

* The subscripts | and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropic lamina, respectively.

Table 2: Comparison of results for specially orthotropic materials with Ref. 6.

v |0 | RW. | R
L - Ref. 6 Present study® 7

0.30 1782 | 2.796-2.805 2.806

0.25 1323 | 3.757-3.779 3.779

0.25 2516 | 1.984-1987 1.987

* The subscripts 1 and 2 denote the major and minor principal directions, respectively, of the specially orthotropic materials defined

in Ref. 6.
% The quantity e (g) is defined by Eq. (37).
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Fig. 1 Nondimensional 90%-decay length for symmetrically and unsymmetrically laminated cylinders, as a
function of laminate orthotropy.
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Fig. 2 Nondimensional 90%-decay length for symmetrically and unsymmetrically laminated cylinders, as a
function of laminate anisotropy.

22
American Institute of Aeronautics and Astronautics



Orthotropy parameter,

Efy_Es
E1(1 E‘Vﬂ)

-1/4

0=

0 _ i i i i
0 0.2 04 0.6 0.8 1

Modulus ratio, E
E,

Fig. 3 Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homogeneous,
specially orthotropic laminates (0.2 <v,, < 0.35).
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Fig. 4 Effect of lamina material properties on nondimensional orthotropy parameter for [(+9),1,, [(+$),.],, and
[(x9),]; laminates (m =1, 2, ...}.
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Fig. 5 Nondimensional orthotropy parameter for typical laminates made of IM7/5260 material.
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Fig. 6 Effect of lamina material properties on nondimensional orthotropy parameter for [(0,/£45),], laminates.
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Fig. 7 Effect of lamina material properties on nondimensional orthotropy parameter for quasi-isotropic laminates
and similar unbalanced laminates.
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Fig. 8 Effect of lamina material properties on nondimensional anisotropy parameter for [(+$),,],
laminates (m = 1, 2, ...).
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Fig. 11 Effect of lamina material properties on nondimensional anisotropy parameter for [(0/90/+45,)_],
and [(+45,/0/90)_], laminates.
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Fig. 12 Effect of lamina material properties on nondimensional anisotropy parameter for [+0]; laminates.
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Fig. 13 Effect of stacking sequence number on nondimensional anisotropy parameter for [(x¢),]; laminates
made of P-100/3502 pitch-epoxy material.
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Fig. 14 Effect of lamina material properties on nondimensional first-order correction factor for [+¢], laminates.
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Fig. 15 Effect of stacking sequence number on nondimensional first-order correction factor for [(£¢),], laminates
made of P-100/3502 pitch-epoxy material.
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Fig. 16 Nondimensional 90%-decay length for [+¢], laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (/R = 1/20).
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Fig. 17 Effect of lamina material properties on nondimensional orthotropy parameter for [0,/90 ], laminates.
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Fig. 18 Effect of lamina material properties on nondimensional anisotropy parameter for [0,/90 ], laminates.
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Fig. 19 Nondimensional 90 %-decay length for [0,/90, ], laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (WR = 1/20).
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Fig. 20 Effect of lamina material properties on nondimensional orthotropy parameter for [70,/0 ]; laminates.
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Fig. 21 Effect of lamina material properties on nondimensional anisotropy parameter for [70,/0 ], laminates.
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Fig. 22 Nondimensional 90 %-decay length for [70,/0,]; laminates made of [NM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (WR = 1/20).
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